Series on Complex Banach Algebra
نویسنده
چکیده
Let X be a non empty complex normed space structure and let s1 be a sequence of X. The functor ( ∑ κ α=0(s1)(α))κ∈N yielding a sequence of X is defined as follows: (Def. 1) ( ∑ κ α=0(s1)(α))κ∈N(0) = s1(0) and for every natural number n holds ( ∑ κ α=0(s1)(α))κ∈N(n + 1) = ( ∑ κ α=0(s1)(α))κ∈N(n) + s1(n + 1). One can prove the following proposition (1) Let X be an add-associative right zeroed right complementable non empty complex normed space structure and s1 be a sequence of X. Suppose that for every natural number n holds s1(n) = 0X . Let m be a natural number. Then ( ∑ κ α=0(s1)(α))κ∈N(m) = 0X . Let X be a complex normed space and let s1 be a sequence of X. We say that s1 is summable if and only if: (Def. 2) ( ∑ κ α=0(s1)(α))κ∈N is convergent. Let X be a complex normed space. One can verify that there exists a sequence of X which is summable. Let X be a complex normed space and let s1 be a sequence of X. The functor
منابع مشابه
$(-1)$-Weak Amenability of Second Dual of Real Banach Algebras
Let $ (A,| cdot |) $ be a real Banach algebra, a complex algebra $ A_mathbb{C} $ be a complexification of $ A $ and $ | | cdot | | $ be an algebra norm on $ A_mathbb{C} $ satisfying a simple condition together with the norm $ | cdot | $ on $ A$. In this paper we first show that $ A^* $ is a real Banach $ A^{**}$-module if and only if $ (A_mathbb{C})^* $ is a complex Banach $ (A_mathbb{C})^{...
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کامل-
Let K be a (commutative) locally compact hypergroup with a left Haar measure. Let L1(K) be the hypergroup algebra of K and UCl(K) be the Banach space of bounded left uniformly continuous complex-valued functions on K. In this paper we show, among other things, that the topological (algebraic) center of the Banach algebra UCl(K)* is M(K), the measure algebra of K.
متن کاملOn (σ, τ)-module extension Banach algebras
Let A be a Banach algebra and X be a Banach A-bimodule. In this paper, we define a new product on $Aoplus X$ and generalize the module extension Banach algebras. We obtain characterizations of Arens regularity, commutativity, semisimplity, and study the ideal structure and derivations of this new Banach algebra.
متن کاملOn some open problems in cone metric space over Banach algebra
In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...
متن کاملStrong Topological Regularity and Weak Regularity of Banach Algebras
In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...
متن کامل